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Looping linear programming decoding
of LDPC codes

Michael Chertkov and Mikhail G. Stepanov

Abstract— Considering the Linear Programming (LP) decod-
ing of Low-Density-Parity-Check (LDPC) code [1], we desctie
an efficient algorithm for finding pseudo codewords with the
smallest effective distance. The algorithm, coined LP-Igm starts
from choosing randomly initial configuration of the noise. The
configuration is modified through a discrete number of steps.
Each step consists of two sub-steps. First, one applies LPaler
to the initial noise-configuration deriving a pseudo-codewrd.
Second, one finds configuration of the noise equidistant frorthe
pseudo codeword and the all zeros codeword. The resulting ise
configuration is used as an entry for the next step of the LP-lop
algorithm. The iterations converge fast to a pseudo codewdr
neighboring the all zeros codeword — domain of the pseudo
codeword attraction shares a common piece of error-surface

with the all zeros codeword domain. Repeated many times the

LP-loop procedure is characterized by the distribution function

(frequency spectrum) of the pseudo codeword effective diahce.

Effective distance of the coding scheme is approximated byhée

shortest distance pseudo-codeword in the spectrum. Effigiey

of the LP-loop algorithm is demonstrated on examples of the
Tanner (155, 64,20) code and Margulisp = 7 and p = 11 codes
(672 and 2640 bits long respectively) performing over Additive-

White-Gaussian-Noise (AWGN) channel.

Index Terms— LDPC codes, Linear Programming Decoding,
Error-floor

I. INTRODUCTIONI: LDPC CODES AND THEIR
DECODINGS

Likelihood (ML), decoding correspondent to restoratioritoef
most probable pre-image’ given the output signat,
arg max P(z|a”), 2
is not feasible in reality since the complexity grows expone
tially with the system size. Belief-propagation (BP), onsu
product, algorithm of Gallager [2] (see also [4], [6], [5 &
popular iterative scheme often used for decoding of the LDPC
codes. Another popular iterative algorithm, that can bever
as a certain limit of the sum-product, is the min-sum aldponit
For an idealized code containing no loops (path connectigg a
two bits through sequence of other bits and their neighigorin
checks is unique) sum-product (with sufficient number of
iterations) is exactly equivalent to the so-called Maximum
A-Posteriori (MAP) decoding. MAP is reduced to ML in the
limit of infinite SNR. For any realistic code (with loops) ot
sum-product and min-sum are approximate. Sum-product can
also be considered as an algorithm solving iterativelyadert
nonlinear equations, one refers to as the BP equations. The
BP equations minimize the so-called Bethe free energy [7].
(The Bethe free energy approach originates from variationa
methodology developed in statistical physics [8], [9].)ni
mizing the Bethe free energy, that is a nonlinear function of
the probabilities/beliefs, under the set of linear (coriipitly

We consider generic LDPC code of Gallager [2], describegy normalizability) constraints is generally a diffictisk.

by its parity checkV x M sparse matrix/{, representingV'  powever in the limit of large SNR one approximates the
bits andM checks. A codeword = {0}, i =1,...,N and Bethe free energy just by the self-energy part assuming that
o; = 0,1 satisfies all the check constraintéy = 1,..., M, he entropy terms are inessential. Then the problem turns to
>_; Haio: = 0 (mod2). We discuss the practical case of finiteninimizing a linear function under the set of linear coristia

N and M, as opposed to th&/, M — oo (thermodynamic) _ gojvaple by standard and computationally feasible Linear
limit for which Shan_non cap_acny theo.rems were formulatqdrogramming (LP) approach. This is exactly the idea behind
[3]. The codeword is sent into a noisy channel. To maké gecoding introduced by J. Feldman, M. Wainwright and
our consideration concrete we consider specific model fer th g Karger [1] in a bit different but absolutely equivalent
channel — AWGN channel. (Notice that all the discussiongay — a5 a relaxation of the ML decoding. (The authors of
and results of the paper can be easily generalized to other ff 4o mention similarity of their approach to the Bethe free

ditive noise linear channel models.) Corruption of a Co‘m"’oenergy approach of [7].) In the LP approach one minimizes
in the AWGN channel is described by the following transitiog,e Bethe self-energy.

probability:
E = Z Zba(aa) Zai(l —2x;) / ks,

P(x|o) Hexp [—25%(z; — 03)?], : 3)

1)

wherex is the signal measured at the channel outputar®l i regpect to beliefs, (o,) and under certain equality and
the Signal-to-Noise Ratio (SNR) of the code. Ideal, Max'muﬁ'ﬁequality constraints. Here in EC](3) is the degree of
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connectivity of thei bit; o, is a local codewordy,, = {c;|i €
a,y., Hyio; = 0 (mod2)}, associated with the check.
The equality constraints are of the two types, normaliratio
constraints (beliefs, as probabilities, should sum to cre)
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compatibility constraints xO  start x© o
Va: Y baloa) =1, (@ T step2
on e > step 3
Vivasi: bi(o)= Y ba(oa), (5) 6 =0@ end
0a\0i xD et |
O =---""7" o0
respectively where;(o;) is the belief (probability) to find bit .0
i in the stater;. Besides, all the beliefs should be non-negative x(2) \
and smaller or equal than unity, thus here is the additiostal s - ~-..
of the obvious inequality constraints: X 0<%, / i Tl)
o

0 < bi(03),ba(0a) < 1. ©) o
o(23)
Il. INTRODUCTIONII: PSEUDO CODEWORDS FRAME , o _ o
ERROR RATE AND EEEECTIVE DISTANCE relgrhir::étessackh*eza;.c illustration of the LP-loop algorithm. iFtexample

As it was shown in [1], and also discussed in [10], [11], the
result of the LP decoding is rarely a codeword but typically
a pseudo codeword: a special configuration containing notord). The resulting expression for the optimal configunati
integers (but rational numbers) among the beligfandb,. ©f the noise (instanton) is
This configurations can be interpreted as mixed state config- G >0
urations, i.e. the ones consisting of a probabilistic nmtaf Linst = o A @
local (corresponding to a single check) codewords. cl
Important characteristics of the code/decoding perfocea
is Frame Error Rate (FER), calculating the probability of > 51-)2
decoding failure. FER decreases with SNR increase and the dip = W (8)
form of this dependence of FER on SNR gives the UIt‘iqs. [OL8) are reminiscent of the formulas derived by Wiberg

mate characterization of the coding scheme performance. Annd co-authors [14], [15] in the context of the computationa

decoding to a pseudo-codeword is a failure. Decoding ?o . . . : . e
. : e analysis applied to iterative decoding with finite nemb
a codeword can also be a failure, but this would as We[fiterations

counts as a failure under the ML decoding. At large SR
splitting of the two FER vs SNR curves, representing ML 1. LP-LOOP THE ALGORITHM.
decoding and approximate decoding (say LP decoding) is _ . . o

due to the pseudo codewords. Actual asymptotics of the two!" this Section we turn directly to describing the LP-loop
curves for the AWGN channel are FRR ~ exp|[—dwy - s2/2] glgonthm. Once the algorithm is .forr.n_ula'.[ed, relatlon"te th
and FERp ~ exp|—dip - s2/2], wheredy, is the so-called mFroductory material, as well as justification and motivat
Hamming distance of the code and thig» is the effective Will become clear.

distance of the code, specific for the LP decoding. The LP+ Start: Initiate a starting configuration of the noise(”).

nand the respective effective distance is

asymptotic is normally shallower than the ML owgp < d . o Step 1:LP decoder calculates closest pseudo codeword,
This phenomenon is called error-floor [12]. o(¥), for the given configuration of the noise
For a generic linear code performed over symmetric channel {b(_LP-,k) (07) b(LP,k)(U )}
it is easy to show that FER is invariant under the change of the ! e “
original codeword (sent i.nto .th_e channel). Therefore, fmf t_ = argmin {E (w(k); {bi(ai),ba(aa)})
purpose of FER calculation it is enough to analyze stasistic {bi(0i)ba(0a)}
exclusively for the case of one known original codeword, say
the all zeros codeword. Than calculating the effectiveaice at the conditions of Eqs[l@[ﬁi,})
of a code one makes an assumption that there exists a special
configuration (or may be few special configurations) of the Ug’@ — b§LP”“)(1),

noise, instantons according to the terminology of [13]ctiks ) ] _

ing the large SNR error-floor asymptotic for FER. Suppose Where the self-energy is defined according to E. (3).
a pseudo codewords = {5; = bi(1); i = 1,...,N}, « Step 2:Find the conditioned mediam*), in the noise
corresponding to the most damaging configuration of the SPace between the pseudo codewardf?, and the all
noise (instanton)gins, is found. Than finding the instanton zeros codeword

configuration itself (i.e. respective configuration of thase) ) o) S O'z(k)

is not a problem, one only needs to maximize the transition y = TW

probability [1) with respect to the noise field;, taken at AN
o = 0 and under condition that the self-energy calculated fore Step 3:If y®*) = y* =1 L, = k and the algorithm
the pseudo-codeword in the given noise fialds zero (i.e. terminates, otherwise go ttep 2 assigningz(*+1) =

equal to the value of the self energy for the all zeros code y®*) +0.
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16.4145

« Output: The output configuratiom(*+) is configuration s S o
of the noise that belongs to the error-surface surrounding PSS S I, AN s
the all zeros codeword. (The error-surface separates the ,_ .. . P
domain of right LP decisions from the domain of wrong & & ==~ == ;% == e -
LP decisions for the original message being the all zeros ° = 164113
codeword.) Moreover, locally, i.e. for the given part of &;i;:::::E:::::E:E}::::Z;;::I:::;::
the error-surface equidistant from the all zeros codeword * Wl et b e X :
and the pseudo codewoed”), y(*) is the closest point 2~ R e R
of the error-surface to the all zeros codeword. N WA ¥ S e e e e
The LP-loop algorithm is schematically illustrated at FAl. B R T EPEEEEEEEERE e
We repeat the algorithm many times picking the initial noise S (1) ”””” e e e e e e, e oot
configuration randomly, however guaranteing that it wowdd b S 16.4058
sufficiently far from the all zeros codeword so that the resul 51 ,------- D e Ry e -
of the LP decoding (first step of the algorithm) is a pseudo  ° e " e
codeword and not the all zeros codeword. The LP-loop always 2 "~~~ """ e" et
converges in some relatively small number of iterationse Th ' 0 cemteama o el e w
effective distance of the coding scheme (for given LDPC code 2 e oA
decoded by LP decoder) is approximated by N (1)_“ ””” e e e e
(k*) 2 (I) SIO lIOO 1!50

. - { (Zi o; ) } © bit label, i =0, ..., 154

attempts of the LP-loo > (crl(k*))2 Fig. 2. 8 lowest configurations found by the LP-loop algorithm for the

. . " . . 155, 64, 20) code. Typical number of the LP-loop iterations requiredi¢h r
It is not guaranteed that the noise configuration with theekstw ; stopping %Oim iS +yp15 P a

possible (of all the pseudo codewords within the decoding

scheme) distance is found in the result of finite number of the 1
LP-loop iterations. However the rhs of Ed] (9) gives a very
tight (if the number of attempts is sufficient) upper bound fo  _ 4|
the actual effective distance of the coding scheme. % dun
c
= |
IV. LP-LOOP. EXAMPLES. s
In this Section we demonstrate the power of the simple LP- .§ oal 1
loop procedure explained in the previous Section by consid- g '
ering three popular examples of relatively long regular KDP
codes. 0.2¢
A. Tanner(155,64,20) code of [16] %0 2 pvs ) 50

d
For this codeN = 155 and M = 93. The Hamming

distance of the code is known to bg, = 20. The authors of Fig. 3.  Frequency spectrum (distribution function) of thiéeive dis-

[10] reported a pseudo codeword with= 16.406. The lowest tance constructed from 3,000 attempts of the LP-loop alyorifor the
. . . . . ) ) 155, 64, 20) code.

effective distance configuration found in the result of tHe- L ( )

loop procedure hagp ~ 16.4037. These two and some

number of other lower lying (in the sense of their effectiv%at is not a codeword. Frequency spectra, characterizing

distance) configuration_s are shown in - 2. The resuIt"ﬁ‘ﬂan‘ormance of the LP-loop algorithm for the code, is shown
frequency spectra (derived frol 000 attempts of the LP- (IJP Fig.[@
s

loop) is shown in Fig[d3. Some of the pseudo codewor
found are actually other (than the all zero one) codewords.
In particular, one finds a codeword closest to the all zer@s og. Margulis code [17] withp = 11

with d = dML = 20. . . . .
This code isN = 2-M = 2640 bits long. We have relatively

. . small number of configurations3() here as it takes much

B. Margulis code [17] withp =7 longer to execute LP loop algorithm in this case. S@e 60

This code hasV = 2 - M = 672. The set of four noise steps of the LP-loop are required for a typical realizatibthe
configurations with the lowest effective distance found hg t algorithm to rich a stopping point. Four lowest configuratio
LP-loop algorithm for the code are shown in Hiy. 4. The lowestre shown in Fig[6. Obviously, with this limited statistics
configuration decodes into a codeword with the Hammirmne cannot claim that the noise configuration with the lowest
distancel6. A big gap separates this configuration from thpossible effective length is found. All the stopping point
next lowest configuration corresponding to a pseudo codwaronfigurations found here correspond to pseudo codewords.
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Fig. 4. 4 lowest noise configuration found by the LP-loop algorithrm fo

the Margulisp = 7 code of [17]. Typical number of the LP-loop iterations Fig. 6. 4 lowest noise configurations found by the LP-loop algorithon f

required to rich a stopping point i) + 20. the Margulisp = 11 code of [17]. Typical number of the LP-loop iterations
required to rich a stopping point B0 =+ 60.

1

median (-0) of the all zeros codeword and a pseudo codeword
will not be decoded into the all zeros codeword. This allows
us to explore the noise space always decreasing monotiynical
the effective distance, or keeping it constant, with any ste
of the LP-loop. It is not yet clear if this key feature of the
0.4t LP decoding is expandable (hopefully with some modification
dwi of the median procedure) to other decodings. The question

0.8r

0.6

distribution function

requires further investigation.

Even thought this direct attempt to extend the looping
algorithm to iterative decoding did not work, we did find
10 20 20 o s 0 70 a way to apply the LP-loop for analysis of an iterative

decoding. We used the most damaging configuration of the
Fig. 5. Frequency spectrum (distribution function) of thfeeive distance noise found within the I_P-Ioop as an entry point for the
found through multiple attempts of the LP-loop for the Mdigw = 7 code.  nstanton-amoeba method of [13], which is designed for find-
The figure is built on 250 random attempts of the LP-loop algorithm. . . . . . . .
ing instanton configurations (most damaging configuratafns
the noise) in the case of a standard iterative decoding. This
(Hamming distance for the code is not known, while the uppByPrid method works well, sometimes resulting in discovery
bound mentioned in [18] i€20.) pf pseudo codewords (o_f res.pectlve |terat|ve.schem(.e) with
impressively small effective distance. We attribute thastf
to the close relation existed between the LP decoding and
V. CONCLUSIONS ANDDISCUSSIONS standard iterative decodings. The results of this hybrid LP

Let us discuss utility of the LP-loop algorithm suggestetop-instanton-amoeba analysis and also detailed evaiuat
in the manuscript. The LP-loop gives an efficient way dhe relation between LP and iterative decodings will be dis-
calculating the effective distance of a code decoded by Lgussed elsewhere [19]. Summarizing, the LP-loop algorithm
It also predicts the noise configuration on the error-sarfacomplemented and extended by the instanton-amoeba method
surrounding the all zeros codeword correspondent to thé [13], provides an efficient practical tool for analysis of
shortest effective distance. Efficiency of the algorithesteéd the effective distance and the most damaging configurafion o
for three popular and relatively long codes, is due to fatie noise (instanton) describing the error-floor for anteaby
convergence of an individual attempt of the LP-loop. (EvellDPC code performing over linear channel and decoded by
for the 2640 bits long code it typically takes onB0=-60 steps LP or iteratively.
of the LP-loop to converge.) As it was already mentioned, the Continuing this discussion and turning to the Generalized
LP-loop procedure applies to any additive noise linear okan Belief Propagation (GBP) of [7] as yet another type of decod-
The only obvious modifications one needs to make to exteimt), one can also consider a Generalized Linear Programming
the LP-loop to other channels concern E@3{I[Y,8,9) and al$@LP) decoding simply combining checks in super-checks
the basic equation of the Step 2. (called valid regions in [7]) and introducing respectiveé sk

One would obviously be interested to extend the loopinextra constraints into the LP minimization procedure. GLP
algorithm to other (traditional) types of LDPC decodingy.e. will obviously be an improvement against LP showing up in
to finding minimal distance of sum-product and min-sum dehe effective distance increase. On the other hand, GLP will
codings. We observed, however, that at least a naive errensalso inherit the convergence of the LP, which is important fo
of the looping procedure does not work. It is guaranteed success of the looping procedure. Therefore, to find the most
the LP decoding case that the noise configuration found asl@amaging configuration of the noise for the GLP decoding we

0.2r
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suggest using the GLP-loop procedure, that is similar to tf@®] O. Shental, A. J. Weiss, N. Shental and Y. WeiGzneralized belief

LP one and only requires to change from LP to GLP at an
individual iteration step of the LP-loop algorithm.

Regarding possible application of the LP-loop algorithm to
other areas of information science and statistical phys$ats
us note that the whole approach obviously applies to arsalysi
of the high SNR limit in many other important inference
problems. One particularly interesting example layingsale
of the coding theory, where BP, GBP and thus LP, GLP, LP-
loop and GLP-loop may find very interesting applications, is
from the2d inter-symbol interference (detection2d channels
with memory), where GBP is claimed to be remarkably
efficient [20].
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